

Gastroenterology & Hepatology Advanced Practice Providers

2020 Third Annual National Conference November 19-21, 2020 Red Rock Hotel – Las Vegas, NV

Jointly provided by the Annenberg Center for Health Sciences at Eisenhower and Gastroenterology and Hepatology Advanced Practice Providers.

Agents in Clinical Development for Other Chronic Liver Diseases Including HBV and PSC Elizabeth K. Goacher, PA-C, MHS, AF-AASLD

Disclosures

All faculty and staff involved in the planning or presentation of continuing education activities provided by the Annenberg Center for Health Sciences at Eisenhower (ACHS) are required to disclose to the audience any real or apparent commercial financial affiliations related to the content of the presentation or enduring material. Full disclosure of all commercial relationships must be made in writing to the audience prior to the activity. Staff at the Annenberg Center for Health Sciences at Eisenhower and Gastroenterology and Hepatology Advanced Practice Providers have no relationships to disclose.

Elizabeth K. Goacher, PA-C, MHS, AF-AASLD

Consultant: AbbVie, Clinical Area – Viral Hepatitis

Consultant: Gilead, Clinical Area – Viral Hepatitis

Consultant: Intercept, Clinical Area – PBC, NASH

Speakers Bureau: AbbVie, Clinical Area – Viral Hepatitis

Speakers Bureau: Gilead, Clinical Area – Viral Hepatitis

Speakers Bureau: Intercept, Clinical Area – PBC, NASH

PSC Agents Variety of MOA

Treatment	Biliary strictures and cholestasis	ALP signal
Bile-acid based therapy and PPARs • UDCA • <i>nor</i> UDCA • FXR and FGF19 analogues • Bezafibrate and fenofibrate		\rightarrow
 Microbiota-based therapy Antibiotics (e.g. vancomycin) Fecal transplantation 		$\rightarrow \checkmark$
Immune-modulation therapy		$\rightarrow \Lambda$
 Glucocorticoids and azathioprine Calcineurin-inhibitors and MMF Anti-TNFα Vedolizumab 		
Simtuzumab (i.e. anti-fibrotic)	© K. C. Toverud CMI	

Glossary by MOA

- Bile acid therapies
 - UDCA
 - norUDCA
- FXR agonists
 - OCA
 - Cilofexor
 - Tropifexor
- FGF
 - Aldafermin (NGM282)
- PPARs
 - Bezafibrate
 - Fenofibrate

- Microbiota based therapy
 - Vancomyocin
 - FMT
- Biologics
 - Infliximab
 - Vedolizumab
- Anti-inflammatories and antifibrotics
 - Cenicriviroc CCRx/CCR5 antagonist
 - Simtuzumab LOXL2 monoclonal antibody

Results of Non-UDCA Trials in PSC

Therapy	References	N	Design	Lab inclusion criteria	Lab inclusion criteria Primary endpoint Result ALP		Other results
Therapy targeting bile a							
norUDCA UDCA derivative	Fickert et al. [197]	161	RCT Multicenter Phase II 12 weeks	Bilirubin < 3.0 mg/dL	∆ALP at 12 weeks	Significant dose-dependent reduction in ALP; ∆ALP (compared to placebo) – 12.3%, –17.3% and – 26.0% in the 500, 1000 and 1500 mg treatment groups	Favorable safety profile (no increase in pruritus)
NGM282 FGF-19 analogue	-urschfield at al. [107]	62	RCT Phase II 12 weeks	\succ	AALP zo zweeks No signifier		Reduced BA Improved (reducer) it mosis markers ELF lest and PRO-Ca
Obeticholic acid (OCA) FXR agonist AESOP trial	Kowdley et al. [100]	76	RCT Phase II 24 weeks	ALP ≥ 2.0*ULN Bilirubin < 2.5*ULN	ΔALP at 24 weeks	Significant reduction in ALP in the 5–10 mg treatment arm compared to placebo; $\Delta ALP - 25\%$ from baseline in the 5–10 mg treatment arm compared to $\Delta ALP - 4.8\%$ in placebo group; $\Delta ALP - 14\%$ vs $- 25\%$ in patients with and without UDCA at baseline in the 5–10 mg OCA arm	Increased pruritus; pruritus (severe pruritus) reported in 46% (8%), 60% (16%) and 67% (41%) in placebo, 1.5–3 mg and 5–10 mg groups; n = 15 dropouts prior to 24 week assessment
LUM00 matelixibat ASBT inhibitor CAMEO trial	Completed; Results at clinicaltrials.gov	27	Open label pilot 14 weeks	ALT and XSE ≤ 5*ULN	∆bile acid levels at 14 weeks		∆BA→ ⇒
Therapy targeting PPA	۲						
Bezafibrate 400 mg/day	Mizuno et al. [121]	7	Open-label pilot 6 months	ALP > 1.5 x ULN	∆ALP at 6 months	ALP reduction with 40% in 3/7 patients at 6 months	
Bezafibrate 400 mg/day	Mizuno et al. [122]	11	Open-label pilot 12 weeks		∆ALP at 12 weeks	ALP reduction at 12 weeks, ALP increase subsequent to treatment cessation	
Bezafibrate 400 mg/day or fenofibrate 200 mg/day	Lemoinne et al. [123]	20	Retrospective study	ALP > 1.5 x ULN on UDCA	ΔALP	Reduced ALP after at least 6 months; 40% reached ALP < 1.5 x ULN	Reduced ALT and pruritus
Fenofibrate	Dejman et al. [124]	8	Open label pilot 6 months	ALP > 1.5 x ULN	∆ALP at 6 months	Significant reduction; ∆ALP – 43%	Reduced ALT No significant effect on Mayo risk score

*nor*Ursodeoxycholic Acid: Change in Alk Phos at 12 Weeks

Fickert P, et al. European PSC norUDCA Study Group. norUrsodeoxycholic acid improves cholestasis in primary sclerosing cholangitis. *J Hepatol.* 2017 Sep;67(3):549-558.

*nor*Ursodeoxycholic Acid: Absolute Changes in Alk Phos, vGT, ALT and AST

Fickert P, et al. European PSC norUDCA Study Group. norUrsodeoxycholic acid improves cholestasis in primary sclerosing cholangitis. *J Hepatol.* 2017 Sep;67(3):549-558.

A Randomized, Placebo-Controlled, Phase II Study of Obeticholic Acid for Primary Sclerosing Cholangitis

Mean change from baseline in ALP over time by treatment group

Kowdley KV, et al. AESOP Study Investigators. A randomized, placebo-controlled, phase II study of obeticholic acid for primary sclerosing cholangitis. *J Hepatol.* 2020 Jul;73(1):94-101. doi: 10.1016/j.jhep.2020.02.033. Epub 2020 Mar 10. PMID: 32165251.

Fenofibrate and Benzafibrate

- 4 studies (2 each)
- Total of 46 patients
- Alk phos decrease promising
 - Range 30-54%
- Multicenter RCT Bezafibrate on itch in PBC and PSC ongoing

Results of Non-UDCA Trials in PSC

Therapy	References	N	Design	Lab inclusion criteria	Primary endpoint	Result ALP	Other results			
Therapy targeting gut microbiota										
Vancomycin vs metronidazole	Tabibian et al. [137]	28	RCT Phase II-III Multicenter 12 weeks	ALP > 1.5*ULN	∆ALP at 12 weeks	Non-dose dependent ALP reduction in all 4 treatment arms (low vs high dose vancomycin or metronidazole)				
Vancomycin	Rahimpour et al. [138]	29	RCT 12 weeks	No	∆Mayo risk score	ALP reduction at 12 weeks; ∆ALP – 18.2%	Reduced Mayo risk score			
Metronidazole	Farkkila et al. 2004 [139]	80	RCT Phase III 36 months	No / not specified (possibly ALP or ALT > ULN)	∆ALP or other liver enzymes, Mayo risk score, symptoms or histology at 36 months	ALP reduction at 36 months; ∆ALP – 52.4% vs – 37.7% in metronidazole + UDCA group vs UDCA + placebo group	Reduced Mayo risk score; higher proportion of patients showed histologic improvement of stage or grade			
Minocycline	Silveira et al. [143]	16	Open-label pilot 12 months	ALP > 1.5*ULN	ΔALP at 12 months	ALP reduction at 12 months; ΔALP – 20%	Reduced Mayo risk score			
Rifaximin	Tabibian et al. [140]	16	Open-label pilot 3 months	ALP > 1.5*ULN	50% ALP reduction at 3 months	No significant ALP reduction	No significant reduction in bilirubin, GGT, Mayo risk score			
Fecal transplantation	Allegretti et al. [41]	10	Open-label pilot 24 weeks	ALP > 1.5*ULN	≥ 50% ALP reduction at week 24	30% (3/10) experienced a ≥ 50% decrease in ALP				
Immune modulating therapy										
All-trans retinoic acid	Assis et al. [115]	15	Open-label pilot 12 weeks	ALP > 1.5 x ULN on UDCA	∆ALP – 30% at 12 weeks	Non-significant ALP reduction; 3/15 achieved ≥ 30% ALP reduction	Reduced ALT and C4; ALT returned to pre-treatment values after washout period			
Infliximab	Hommes et al. [167]	10	RCT 52 weeks	ALP > 2*ULN	≥ 50% ALP reduction at week 18	Failed to demonstrate effect in the n = 6 treatment group	No change in histologic stage or symptom scores			

Results of Non-UDCA Trials in PSC

Therapy	References	N	Design	Lab inclusion criteria	Primary endpoint	Result ALP	Other results
Other or undefined ta	argets						
Cenicriviroc Anti- inflammatory effects (CCR2/CCR5 antagonist) PERSEUS trial	Completed, not published; results at clinicaltrials.gov	20	Open label Phase II 24 weeks	ALP > 1.5*ULN Bilirubin ≤ 2.0 mg/dL	ALP (%∆)	50% ($n = 10$) of patients achieved ALP reduction to 1.5*ULN at 24 weeks. Mean ALP reduction – 4.5% at 24 weeks. No patients achieved ALP normalization or 50% ALP reduction	
Curcumin Anti- inflammatory effects, upregulation of PPAR- <i>y</i>	Completed, not published	15	Phase I-II Open- label	ALP > 1.5*ULN	ALP 40% reduction or reduction to < 1.5*ULN	Results submitted to clinicaltrials.gov, but not posted	

Currently Registered and Ongoing Therapeutic Trials in Adult PSC

Therapy	Pathophysiologic target	Trial Phase	Design	Lab inclusion criteria	Primary endpoint	Secondary endpoint				
Bile acid based therapy										
NorUDCA	UDCA derivative Unknown receptor	Ш	Double-blind RCT Multicenter	No (?)	ALP partial normalization	Histology				
Cilofexor	FXR agonist	=	Double-blind RCT	ALT ≤ 8*ULN Bilirubin ≤ 2.0 mg/mL	Histology	∆ALP ∆other liver biochemistries ∆LSM (TE) + +				
Therapy targeting PP	AR									
Seladelpar	Selective PPAR- ð agonist	II	Double-blind RCT	ALP ≥ 1.5*ULN and < 8*ULN Bilirubin ≤ 2*ULN ALT and AST ≤ 5*ULN Platelets ≥ 140,000	ΔALP at 24 w	LTX ∆MELD Hepatic decompensating events HCC				
Bezafibrate	PPAR- <i>a</i> agonist	111	Double-blind RCT	No	Proportion of patients reaching 50% reduction in itch intensity at 3 weeks	∆liver biochemistries ∆autotaxin activity ∆cholesterol, CK, creatinine				
Therapy targeting gut	Therapy targeting gut microbiota									
Vancomycin	Antibiotic	Ш	Double-blind RCT Multicenter	ALP ≥ 1.5*ULN	ALP normalization at 6, 12, 18, 21, 24, months	∆TE at 18 months				

The Nonsteroidal Farnesoid X Receptor Agonist Cilofexor (GS-9674) Improves Markers of Cholestasis and Liver Injury in Patients With Primary Sclerosing Cholangitis

Hepatology. Volume: 70, Issue: 3, Pages: 788-801, First published: 19 January 2019, DOI: (10.1002/hep.30509).

Currently Registered and Ongoing Therapeutic Trials in Adult PSC

Therapy	Pathophysiologic target	Trial Phase	Design	Lab inclusion criteria	Primary endpoint	Secondary endpoint				
Bile acid based therapy										
NorUDCA	UDCA derivative Unknown receptor	111	Double-blind RCT Multicenter	No (?)	ALP partial normalization	Histology				
Cilofexor	FXR agonist	Ш	Double-blind RCT	ALT ≤ 8*ULN Bilirubin ≤ 2.0 mg/mL	Histology	∆ALP ∆other liver biochemistries ∆LSM (TE) + +				
Therapy targeting PP	PAR									
Seladelpar	Selective PPAR- 5 agonist	=	Double-blind RCT	ALF > 1.5*ULN and ≤ 8*0LN Bilirubin ≤ 2*ULN ALT and AST ≤ 5*ULN Platelets ≥ 140,000	ΔALD at 24 w	LTX AMELD Hepatic decompensating events HCC				
Bezafibrate	PPAR- <i>a</i> agonist	111	Double-blind RCT	No	Proportion of patients reaching 50% reduction in itch intensity at 3 weeks	∆liver biochemistries ∆autotaxin activity ∆cholesterol, CK, creatinine				
Therapy targeting gu	Therapy targeting gut microbiota									
Vancomycin	Antibiotic	111	Double-blind RCT Multicenter	ALP ≥ 1.5*ULN	ALP normalization at 6, 12, 18, 21, 24, months	∆TE at 18 months				

Currently Registered and Ongoing Therapeutic Trials in Adult PSC

Therapy	Pathophysiologic target	Trial Phase	Design	Lab inclusion criteria	Primary endpoint	Secondary endpoint			
Immune modulating therapy									
Simvastatin	Immune modulating receptor?		Double-blind RCT Multicenter	No	Overall survival; Listing of liver transplantation Time to first varices bleeding or CCA, GBC, HCC	ΔALP Δbilirubin ΔMELD or ΔChild-Pugh MRCP progression ΔLSM (TE) or ∆serum fibrosis markers Progression of symptoms, biliary dysplasia, colon cancer or dysplasia			
Timolumab BTT1023 BUTEO trial	Anti-VAP-1 antibody	II	Open label	ALP > 1.5*ULN Stable ALP i.e. < 25% variation between screening visits 1 and 2	ALP 25% reduction by day 99				
All-trans retinoic acid	FXR/RXR complex activation	II	Open label ALP ≥ 1.5*ULN	ALP ≥ 1.5*ULN	∆ALP at 24 w	ALP > 1.5*ULN ΔALT $\Delta bile acids$ $\Delta ELF test$ $\Delta LSM (TE)$			
Sulfasalazine	Immune modulating	II	Double-blind RCT Multicenter	ALP ≥ 1.67*ULN Bilirubin ≤ 3 mg/dL INR ≤ 1.4 Platelets ≥ 100,000 MELD ≤ 10	APL ≥ 1.5 at 22 w	∆other liver biochemistries ∆Mayo risk score Symptoms			
Vidofludimus calcium	Blocks IL-17 production	Ш	Open label	ALP > 1.5*ULN Indirect bilirubin < 1.2*ULN	∆ALP at 3 and 6 months	$\Delta other$ liver biochemistries IL-17 and IFN γ levels at 3 and 6 months			

- Multiple mechanisms of action being evaluated
- No single agent ready for prime time
- Combination agents may be the ticket
- Surrogate endpoint of alkaline phosphatase and small numbers of patients challenge clinical trial conclusions

Hepatitis B: Cure? Really?

- Challenges
 - cccDNA eradication requires more than viral suppression
 - Clinical trial endpoint definition
- Many MOAs in trials
 - Antiviral
 - Immunomodulatory

Hepatitis B Drugs in Development by Stage

Table 1. Therapeutics in clinical development for chronic hepatitis B										
Drug Class	Drug	Company	Phase 1	Phase 2	Phase 3					
DAAs										
Core protein inhibitors	AB-506 ABI-H0731 ABI-H2158 EDP-514 JNJ-6379 JNJ-0440 RO7049389	Arbutus Biopharma Assembly Biosciences Assembly Biosciences Enanta Pharmaceuticals Johnson & Johnson Johnson & Johnson Roche								
siRNA, antisense RNA	AB-729 DCR-HBVS GSK/IONIS-HBV-L _{Rx} IONIS-HBV _{Rx} JNJ-3989 (ARO-HBV) RO7062931 Vir-2218 (ALN-HBV02)	Arbutus Biopharma Dicerna Pharmaceuticals Ionis/GlaxoSmithKline Ionis/GlaxoSmithKline Johnson & Johnson Roche Vir Biotechnology/Alnylam								
pol/RT inhibitor	Tenofovir exalidex	ContraVir Pharmaceuticals		├						
HBsAg secretion inhibitors	REP-2139 REP-2165	Replicor Replicor								
Indirect-acting antivirals and immur	notherpeutics									
HBV entry inhibitor	Bulevirtide	Hepatera Ltd								
TLR-7 agonists	AL-034 RG-7854 RO7020531	Johnson & Johnson/Alios Roche Roche								
TLR-8 agonist	GS-9688	Gilead Sciences								
Therapeutic vaccines	AIC-649 INO-1800 TG1050	AiCuris Inovio Pharmaceuticals Transgene								
RIG-I and NOD2 agonist	Inarigivir	Spring Bank								
Apoptosis inducer	APG-1387	Ascentage Pharma								
FXR agonist	EYP-001	Enyo Pharma		→						

Abbreviations: NOD2, nucleotide-binding oligomerization domain-containing protein 2; RIG-I, retinoic acid-inducible gene-I.

References

- Vesterhus, M., Karlsen, T.H. Emerging therapies in primary sclerosing cholangitis: pathophysiological basis and clinical opportunities. *J Gastroenterol* **55**, 588–614 (2020). https://doi.org/10.1007/s00535-020-01681-z
 - http://creativecommons.org/licenses/by/4.0/.
- Kowdley KV, Vuppalanchi R, Levy C, Floreani A, Andreone P, LaRusso NF, Shrestha R, Trotter J, Goldberg D, Rushbrook S, Hirschfield GM, Schiano T, Jin Y, Pencek R, MacConell L, Shapiro D, Bowlus CL; AESOP Study Investigators. A randomized, placebo-controlled, phase II study of obeticholic acid for primary sclerosing cholangitis. J Hepatol. 2020 Jul;73(1):94-101. doi: 10.1016/j.jhep.2020.02.033. Epub 2020 Mar 10. PMID: 32165251
- Martin Wagner and Peter Fickert ; Drug Therapies for Chronic Cholestatic Liver Diseases. Annual Review of Pharmacology and Toxicology. Vol. 60:503-527
- Trauner M, Gulamhusein A, Hameed B, et al. The nonsteroidal farnesoid X receptor agonist Cilofexor (GS-9674) improves markers of cholestasis and liver injury in patients with primary sclerosing cholangitis. Hepatology. 2019;70:788–8
- Fickert P, Hirschfield GM, Denk G, Marschall HU, Altorjay I, Färkkilä M, Schramm C, Spengler U, Chapman R, Bergquist A, Schrumpf E, Nevens F, Trivedi P, Reiter FP, Tornai I, Halilbasic E, Greinwald R, Pröls M, Manns MP, Trauner M; European PSC norUDCA Study Group. norUrsodeoxycholic acid improves cholestasis in primary sclerosing cholangitis. J Hepatol. 2017 Sep;67(3):549-558. doi: 10.1016/j.jhep.2017.05.009. Epub 2017 May 18. PMID: 28529147.
- Mizuno S, Hirano K, Isayama H, et al. Prospective study of bezafibrate for the treatment of primary sclerosing cholangitis. J Hepatobiliary Pancreat Sci. 2015;22:766–70
- https://www.liver.theclinics.com/article/S1089-3261(19)30019-4/pdf
- <u>https://jvi.asm.org/content/93/20/e01032-19#sec-10</u>
- https://www.gastroenterologyandhepatology.net/archives/february-2020/overview-of-current-and-emerging-treatments-for-hepatitis-b-virus-infection/